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Solution 9

1. Consider Theorem 3.4. Show that the function Φ maps Br(x0) to BR(y0) has an inverse,
that is, there is a continuous function G in BR(y0) back to Br(x0) satisfying Φ(G(y)) = y
for all y ∈ BR(y0).

Solution. Theorem 3.4 asserts that for each y ∈ BR(y0) there is a unique x ∈ Br(x0)
satisfying Φ(x) = y. The correspondence y 7→ x defines a mapG that satisfies Φ(G(y)) = y.
(Note that G may not map BR(y0) onto Br(x0). More precisely speaking, G is the inverse
map of the restriction of Φ to the set G(BR(y0)).) It remains to show that G is continuous.
Indeed, let y1, y2 ∈ BR(y0), we have Φ(G(yi)) = G(yi) + Ψ(G(yi)) = yi, i = 1, 2 . It follows
that

‖G(y1)−G(y2)‖ = ‖y1 − y2 −Ψ(G(y1) + Ψ(G(y2))‖
≤ ‖y1 − y2‖+ ‖Ψ(G(y1)−Ψ(G(y2))‖
≤ ‖y1 − y2‖+ γ‖G(y1)−G(y2)‖ .

which implies

‖G(y1)−G(y2)‖ ≤
1

1− γ
‖y1 − y2‖ , y1, y2 ∈ BR(y0) .

That is, G is Lipschitz continuous.

Note. The same trick has appeared in the proof of the Inverse Function Theorem. Here we
need to use the norm ‖·‖ to replace the Euclidean norm there, and that is it. In the Inverse
Function Theorem we can further study the differentiability of the inverse map, but now
we cannot do it here. Why? We have not yet considered the differentiable property in a
normed space!

2. Consider the function

h(x, y) = (x− y2)(x− 3y2), (x, y) ∈ R2.

Show that the set {(x, y) : h(x, y) = 0} cannot be expressed as a local graph of a C1-
function over the x or y-axis near the origin. Explain why the Implicit Function Theorem
is not applicable.

Solution. The Jacobian matrix of h is singular at (0, 0), hence the Implicit Function
Theorem cannot apply. Indeed, h(x, y) = 0 means either x− y2 = 0 or x− 3y2 = 0. The
solution set of {(x, y) : h(x, y) = 0} consisting of two different parabolas passing the origin.

3. Consider the mapping from R2 to itself given by f(x, y) = x − x2, g(x, y) = y + xy .
Show that it has a local inverse at (0, 0). And then write down the inverse map so that
its domain can be described explicitly.

Solution. Let u = x− x2, v = y+ xy. The Jacobian determinant is 1 at (0, 0) so there is
an inverse in some open set containing (0, 0). Now we can describe it explicitly as follows.
From the first equation we have

x =
1±
√

1− 4u

2
.
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From u(0, 0) = 0 we must have

x =
1−
√

1− 4u

2
.

Then

y =
v

1 + x
=

2v

1−
√

1− 4u
.

We see that the largest domain in which the inverse exists is {(u, v) : u ∈ (0, 1/4), v ∈ R}.

In the following the Initial Value Problem (IVP) refers to x′ = f(t, x), x(t0) = x0, where
f satisfies the Lipschitz condition in some rectangle containing (t0, x0) in its interior, see
Notes for details.

4. Solve the (IVP) for f(t, x) = αt(1 + x2), α > 0, t0 = 0, and discuss how the interval of
existence changes as α and x0 vary.

Solution. The solution is given by

x(t) = tan(tan−1 x0 + αt2/2) ,

where the tangent function is chosen so that tan : (−π/2, π/2) → (−∞,∞). The (maxi-
mal) interval of existence is (−a, a) where

a =
1

α
(π − 2 tan−1 x0) .

We see that for fixed α, the interval shrinks as x0 increases, and for fixed x0, it shrinks too
as α increases. The maximal interval of existence depends on f, t0 and x0 in a complicated
manner.

5. Optional. Deduce Picard-Lindelöf Theorem based on the ideas of perturbation of identity.
Hint: Take a particular

y =

∫ t

t0

f(t, x0)dt

in the relation x+ Ψ(x) = y.

Solution. Write the integral form of (IVP) as

x(t)− x0 −
∫ t

t0

(f(s, x(s))− f(s, x0))ds =

∫ t

t0

f(s, x0)ds .

Define Tx(t) = Ψ(x) + y, where

Ψ(x) = −x0 −
∫ t

t0

(f(s, x(s))− f(s, x0))ds .

Let
X = {x ∈ C[t0 − a′, t0 + a′] : |x(t)− x0| ≤ b}

where a′ = min{a, b/M, 1/L} as before. We first claim, when a′ ≤ b/M , T maps X to
itself. Indeed,

|Tx(t)− x0| = |
∫ t

t0

f(s, x(s))ds| ≤M |t| ≤ b ,
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by our choice. Next, claim T is a contraction on X. We have

|Tx1(t)− Tx2(t)| = |Ψ(x1)(t)−Ψ(x2)(t)| =
∣∣∣∣∫ t

t0

(f(s, x1(s)− f(s, x2(s)) ds

∣∣∣∣ ≤ L|t| ≤ a′
by our choice. Now, apply Contraction Mapping Principle to T on X to get a unique fixed
point. It is the solution of our (IVP).

6. Show that the solution to IVP belongs to Ck+1 (as long as it exists) provided f ∈ Ck for
k ≥ 1. In particular, y ∈ C∞ provided f ∈ C∞.

Solution. It is an elementary fact and easy to show that the composition of two Ck-
functions is again Ck. Now, from (1) we see that y is C1 if the RHS, that is, f(x, y(x))
is continuous. By induction, assuming now y is Ck+1 when f is Ck. When f is Ck+1, it
is also Ck and so by induction hypothesis y is Ck+1. The RHS of (1) is the composition
of twonCk+1-functions and hence is also Ck+1. It shows that the LHS y′ is Ck+1, that is,
y ∈ Ck+2, done.

7. Let f ∈ C(D), D = (a, b) × (c, d), satisfying the Lipschitz condition. Let x1 and x2 be
two solutions to (IVP) defined on open subintervals I and J in (a, b) respectively with
x1(t0) = x2(t0) at some t0 ∈ I ∩ J . Assuming that their graphs lie in D. Show that they
are equal on I ∩ J .

Solution. Let (α, β) = I ∩J . By the fundamental theorem, there is an open interval con-
taining t0 such that the two solutions coincide. Let b∗ = sup{c : x1 = x2 on [t0, c)}. By
continuity x1(b

∗) = x2(b
∗). If b∗ < b, by the fundamental theorem taking b∗ as the initial

time, x1 and x2 coincide in an open interval containing b∗, contradicting the definition of b∗.

8. Fill out the details for the Picard-Lindeöf Theorem for systems (Theorem 3.12) in Notes.

Solution. First of all, Proposition 3.11 still holds where the integral equation (3.7) be-
comes

x(t) = x0 +

∫ t

t0

f(s,x(s)) ds .

And we define

T x(t) = x0 +

∫ t

t0

f(s,x(s)) ds ,

as before. To verify T maps X to X (see Notes for the def of X) we have

|(T x)(t)− x0| = |
∫ t

t0

f(s,x(s)) ds|

≤ M |t− t0|
≤ Ma′

≤ b ,

so T maps X into X. We explain the second step in the above estimate by noting the
general formula:

∣∣∣∣∫ b

a
f ds

∣∣∣∣ ≤
√

(b− a)

∫ b

a
|f|2 ds .
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To prove,

∣∣∣∣∫ b

a
f ds

∣∣∣∣ =

√(∫ b

a
f1 ds

)2

+ · · ·+
(∫ b

a
fn ds

)2

≤

√
(b− a)

∫ b

a
f21 + · · ·+ (b− a)

∫ b

a
f2n ds ( Cauchy-Schwarz)

=

√
(b− a)

∫ b

a
|f|2 .

In our situation, we get ∣∣∣∣∫ t

t0

f(s,x(s)) ds

∣∣∣∣ ≤
√
|t− t0|

∫ t

t0

|f|2 ds .

Then using |f(s,x(s))| ≤M ≡ sup |f| to get∣∣∣∣∫ t

t0

f(s,x(s)) ds

∣∣∣∣ ≤M |t− t0| .
The rest of the proof proceeds as the scalar case.

9. Show that there exists a unique solution h to the integral equation

h(x) = 1 +
1

π

∫ 1

−1

1

1 + (x− y)2
h(y)dy,

in C[−1, 1]. Also show that h is non-negative.

Solution. Let X = C[−1, 1] be the complete metric space we work on and set

(Th)(x) = 1 +
1

π

∫ 1

−1

1

1 + (x− y)2
h(y)dy.

It is easy to check that T is continuous on X. For h2, h1 ∈ C[−1, 1], we have

|Th2(x)− Th1(x)| =

∣∣∣∣ 1π
∫ 1

−1

1

1 + (x− y)2
(h2(y)− h1(y))dy

∣∣∣∣
≤ 2

π
‖h2 − h2‖∞, ∀x ∈ [−1, 1].

Hence T is a contraction on C[−1, 1], and a fixed point is ensured by Banach’s Fixed Point
Theorem.

Next we show that the fixed point h is non-negative. Notice that

1

π

∫ 1

−1

1

1 + (x− y)2
dy =

1

π
[arctan(1− x) + arctan(1 + x)] ≤ 1

2
, x ∈ [−1, 1].

From the def of h we have

‖h‖∞ ≤ 1 +
1

2
‖h‖∞,
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which implies ‖h‖∞ ≤ 2. It follows that

h(x) ≥ 1− 1

π

∫ 1

−1

1

1 + (x− y)2
‖h‖∞dy ≥ 1− 1

2
× 2 ≥ 0,

h is non-negative.

Note. An alternate approach is to work on the space Y = {h ∈ C[−1, 1] : h(x) ≥ 0,∀x}.
From the definition of T , it is clear that T maps Y to Y . Since Y is easily shown to be
a closed set in C[−1, 1] (hence complete), we apply the Contraction Mapping Principle
directly to get a non-negative solution.


